Protective effect of melatonin against chlorpromazine-induced liver disease in rats

A'maal A. Sulaiman, BSc, MSc, Nada N. Al-Shawi, MSc, PhD, Ahmed H. Jwaied, BSc, MSc, Dalaram M. Mahmood, MBChBD Path, Saad A. Hussain, MSc, PhD.

ABSTRACT

Objective: To evaluate the possible protective effect of orally administered melatonin against Chlorpromazine (CPZ)-induced liver disease in rats.

Methods: We performed this study in the College of Pharmacy, University of Baghdad during the period of melatonin was studied through treatment of rats with single dose (10 mg Kg⁻¹) orally, 7 days before and during the period of CPZ treatment, and 7 days after the induction of suspected hepatotoxicity. The parameters of oxidative stress, malondialdehyde (MDA) and glutathione (GSH) in liver tissue homogenate, activities of the liver aminotransferases, alanine transaminase (ALT) and aspartate transaminase (AST) in serum, in addition to serum level of bilirubin (total and conjugated) were evaluated. Liver tissue sections were examined to follow histological changes.

Results: Analysis of data showed that treatment with melatonin significantly attenuated the oxidative stress parameters as evidenced by lowering MDA levels in tissue homogenate while not affecting GSH levels. Serum activities of ALT, AST and serum bilirubin were normalized with both pre-treatment and post-treatment with melatonin. Data revealed that post-treatments with both saline and melatonin restore hepatic activity; however, melatonin level than saline post-treatment. Additionally, histological evaluation revealed improvement of liver damage in this respect.

Conclusion: The presented data indicated that orally administered melatonin in pharmacological doses protects against CPZ-induced liver disease in rats.

Saudi Med J 2006; Vol. 27 (10): 1477-1482

Acute, drug-induced hepatocellular cholestasis (either pure or cholestatic hepatitis) is a common manifestation of drug-induced hepatic injury. Chlorpromazine (CPZ) is the most extensively of producing hepatocanalicular cholestasis. The mechanism of CPZ-induced liver injury has been many factors found to be implicated in its adverse effect on the liver. Chlorpromazine produces a dose-related impairment in bile secretion and altering consequently affect the functional integrity of these sites. A secretory product of the pineal gland, functions not only as a direct antioxidant, namely scavenger of various oxygen free radicals and peroxyl radicals, but also as an indirect antioxidant through the enhancement of antioxidant enzymes activities in tissues such as liver and brain. Many reports have shown that melatonin (MT) protects against liver injury with intrahepatic cholestasis in rats treated with alpha-
naphthylisothiocyanate (ANIT), possibly through its
antioxidant activity and its inhibitory action against
Accordingly, this
study was designed to evaluate the possibility that
MT exerts a protective effect on cholestatic liver
j injury induced by treatment with CPZ in rats.

Methods. Thirty-six adult rats of both gender
200 were used and housed in the animal house of the
College of Pharmacy, University of Baghdad, Iraq.
fed standard rat chow ad libitum, and had free access
to tap water. They were allocated into 6 groups (6
animals in each group) and treated as follows: Group

1 of CPZ-HCL (Medisca, Milan-Italy) alone for 2
9 Group II = 6 animals

day-1 MT (ARTI DRUGS Ltd,
Tarapur, India) orally for 7 days before and during
CPZ treatment as in group I. Group III = 6 animals
as negative control. Group IV = 6 animals treated

1) of MT orally for 3
oral daily doses of MT for 7 days to evaluate the
effect of MT during the recovery stage. Group VI - 6
animals treated with saline for 7 days after treatment

in plain tubes to clot, and serum was prepared by

℃ unless immediately
analyzed. Liver samples weighed and homogenized
in chilled saline phosphate buffer solution to get 10%
tissue homogenate, then centrifuged at 3000 rpm for
10 minutes. Aliquots of the supernatants were used
for measurement of lipid peroxidation parameters
including malondialdehyde (MDA) content by
thiobarbituric acid method of Buge and Aust, and
glutathione (GSH) level according to the method of

Serum activities of alanine aminotransferase
(ALT) and aspartate aminotransferase (AST),
as indices of hepatic cell damage, were assayed

UK). Serum bilirubin levels (total and conjugated)

evaluate the histological changes, the samples
were introduced randomly and the pathologist was
completely blind to the experimental allocation
of rats. All results were expressed as mean ± SD,
comparisons between groups were performed using
p

Results. measured parameters compared to those received only
saline. The level of serum ALT and AST activities

ALT and AST activities to levels being comparable
1), given after treatment with CPZ, attenuates the
increase in serum ALT and AST, while post-treatment

AST activity only, while ALT activity remained
unchanged compared to CPZ- treated group (Table
1). Serum bilirubin levels (total and conjugated)

compared to control group, and both pre-treatment

reduced serum bilirubin levels (total and conjugated);
on the other hand, treatment with saline after

serum levels of both total and conjugated bilirubin
(Table 1). Malondialdehyde levels in liver tissue
homogenates of CPZ-treated group were found to be

+ CPZ (controls), and those treated with MT alone.
Treatment with MT after appearance of hepatotoxicity,

levels in liver tissue homogenate compared to CPZ-
treated group, and those of saline treated post-CPZ
challenge. Liver GSH levels of CPZ-treated rats were

and negative controls. No one of the other treatments

affect hepatic GSH levels (Table 2). Concerning

the treated rats; the mainly observed pathological
changes included: cholestasis manifested by feathery
changes, proliferation of bile duct, appearance of
pigmented granules and intracellular vacuoles within
glass appearance and hydropic degeneration (Figure
1). These changes were suppressed in liver sections of
all rats pre-treated and post-treated with MT (Figures
2 & 3), while livers of the saline- post-CPZ treated
Hepatoprotective effect of melatonin … Sulaiman et al

Table 1 -

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Serum ALT Ul⁻¹</th>
<th>Serum AST Ul⁻¹</th>
<th>Total bilirubin mg dl⁻¹</th>
<th>Conjugated bilirubin mg dl⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>± 1.2a</td>
<td>± 0.2a</td>
<td>± 0.12a</td>
<td>0.20 ± a</td>
</tr>
<tr>
<td>Melatonin + chlorpromazine</td>
<td>± 10.2a</td>
<td>± 0.26b</td>
<td>± 0.19b</td>
<td>± 0.17b</td>
</tr>
<tr>
<td>Chlorpromazine + saline</td>
<td>± 9.7b</td>
<td>± 0.07b</td>
<td>± 0.07b</td>
<td>± 0.07b</td>
</tr>
<tr>
<td>Chlorpromazine + melatonin</td>
<td>± 13.3b</td>
<td>± 0.26b</td>
<td>± 0.26b</td>
<td>± 0.26b</td>
</tr>
<tr>
<td>F = 12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values presented as mean ± SD. Values with non-identical superscripts (a, b) within the same parameter are considered significantly different (p < 0.05). ALT - alanine aminotransferase, AST - aspartate aminotransferase.

Figure 1 - Section showing morphological alteration of rat’s liver after 2 weeks treatment with chlorpromazine 40 mg Kg⁻¹ orally. Infiltration of inflammatory cells around the portal tract and hepatocytes. Intracellular vacuoles within hepatocytes, severe feathery changes and focal necrosis. Appearance of pigment granules, hydropic degeneration. Ground glass appearance and loss of nuclei. (Hematoxylin - eosin stain, magnification x40).

Figure 2 - Section showing the improvement of liver histology by treatment with 10mg Kg⁻¹ melatonin starting 7-days prior to and during chlorpromazine treatment. Normal portal tract. Normal hepatocytes (Hematoxylin - eosin stain, magnification x40).

Figure 3 - Section showing that melatonin administration after chlorpromazine treatment restores the normal morphology and reduces the inflammatory cell infiltration (Hematoxylin - eosin stain, magnification x40).

Figure 4 - Section showing effects of chlorpromazine plus post-central arteriole and sinusoidal congestion. Bile duct dilatation and proliferation of bile duct (Hematoxylin - eosin stain, magnification x40).
rats showed less improvement in the affected hepatic tissue (Figure 4) as evidenced by the score system utilized for this purpose (Table 3).

Discussion. Cholestatic hepatitis is one of the most common forms of drug related injury, and has been associated with numerous agents from variety of the pharmacologic categories such as estrogen, erythromycin and various phenothiazines. Cholestatic liver diseases are characterized by the accumulation of hepatotoxic substances, mitochondrial dysfunction and the impairment of liver antioxidant defense systems. The data reported in this study demonstrated the implication of oxidative stress in hepatic tissue damage induced by CPZ-treatment, manifested by elevation of MDA contents in liver tissue (Table 2), this result is consistent with other studies that show the contribution of oxidative stress in the pathogenesis of cholestasis, and can be explained as a consequence of generation of CPZ scavenging various types of free radicals, and enhancement of antioxidant enzymes activities that causes changes in carrier mediated transport, activities of membrane bound enzymes, receptor binding, endocytosis and depolarization exocytosis, such as ALT and AST, to the plasma increasing their activities there. In the present study, Table 1 showed an elevation in serum ALT and AST activities in animals treated with CPZ alone compared to controls, which are consistent with those reported by others. The protective effect of MT can be explained according lipid bi-layers of membrane phospholipids rather than the polar heads. Thus, in this position it is capable of functioning as a free radical scavenger, and it may also provide an indirect means by which the membrane can resist oxidative damage. Furthermore, several studies have shown that MT stabilizes cell membrane can resist oxidative damage. Furthermore, several studies have shown that MT stabilizes cell membrane fluidity thereby preserving their functional integrity.

It has been reported that MT receptors subtype MT1 were expressed in human gall bladder epithelium, suggesting that in addition to its profound receptor independent effects as antioxidant, MT could also act through receptor mediated process thereby influencing gall bladder functions. Recently, other researchers reported that MT increases bile production and improves the distribution of different histopathological changes in the liver of rats challenged with chlorpromazine (CPZ).

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>MDA, μmol g⁻¹ tissue</th>
<th>GSH, μmol g⁻¹ tissue</th>
<th>GSH, μmol g⁻¹ tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MT + CPZ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPZ + saline</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPZ + melatonin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Values presented as Mean ± SD, Values with non-identical superscripts (a, b, c, d) within the same parameter are significantly different (p < 0.05). CPZ - Chlorpromazine, MT - Melatonin.
in animals pre-treated with MT compared to CPZ-treated group (Table 1). Cholestatic injury induced by CPZ is a self-limiting effect, where complete recovery of the drug. The data presented in this study also showed that the studied parameters are restored naturally during post-treatment with saline and non-post-treatment with MT. However, MT provided better effect manifested by reducing serum ALT attributed to post-treatment with saline; this could be related to the stabilizing effect of MT on hepatocyte changes induced by CPZ and reduces the severity of feathery changes and bile duct proliferation (Figure 1). These results are compatible with those reported previously by others.

In conclusion, MT when administered orally in pharmacological doses protects against CPZ-induced liver injury in rats, as both a preventive and treatment measures, and further investigations are required to clarify the detailed mechanism.

Acknowledgment.
the University of Baghdad for supporting this project.

References

ATPase activities of canicular-enriched rat liver plasma membranes.

by chlorpromazine hydrochloride and its metabolites.

endogenous hydroxyl radical scavenger. 1993;

the reduction of oxidative stress. 2000; 7:

effects of melatonin against alpha-naphthylisothiocyanate-induced liver injury in rats.

M. Characterization of the protective effects of melatonin and related indoles against alpha-naphthylisothiocyanate-induced liver injury in rats.

rats-effects of prolonged administration of some drugs used clinically.

determination of serum glutamic oxalacetic and pyruvic transaminases.

16. Lammert F, Matern S. Hepatic diseases caused by drugs.

On the role of lipid peroxidation in the pathogenesis of liver damage induced by long standing cholestasis.

antioxidant defense system with liver injury development in rats with single α-naphthylisothiocyanate intoxication.

20. Toler MS. Oxidative stress plays an important role in the pathogenesis of drug-induced retinopathy.

22. Jean PA, Bailic MB, Roth RA. α-naphthylisothiocyanate-induced elevation of biliary glutathione.

23. Jean PA, Roth RA. Naphthylisothiocyanate disposition in bile and its relationship to liver glutathione and toxicity.

α-naphthylisothiocyanate-induced liver injury by decreased hepatic non-protein sulphydryl contents.

reactive oxygen species by melatonin.

26. Marshall KA, Reiter RJ, Poeggeler B, Arnoma OI, Halliwell antioxidant defense enzymes, SOD, CAT and GSR and levels of reduced and oxidized GSH in rat tissues.

of Chlorpromazine, HCL on the structural parameters of bovine brain membranes. 603-611.

cholestatic jaundice.
Hepatoprotective effect of melatonin … Sulaiman et al

et al. Melatonin presents changes in microsomal membrane 1997;

peroxidation.

34. Garcia JJ, Reiter RJ, Ortiz GG, Oh CS, Tang K, Yu BD, et al. Melatonin enhances tamoxifen's ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation.

Gallardo JI, et al. Melatonin prevents oxidative stress and hepatocyte cell death induced by experimental cholestasis.

39. Sahna E, Paraakpinar H, Vardi N, Cigremis Y, Acet A. Efficacy of melatonin as protectant against oxidative stress and structural changes in liver tissue in pinealectomized rats.