Variants and deformities of atlas vertebrae in Eastern Anatolian people

Ahmet Kavaklı, MD PhD, Atıf Aydınlıoglu, MD PhD, Hakki Yesilyurt, MD PhD, İller Kus, PhD, Semih Diyarbakırı, PhD, Saadet Erdem, MSc, Ömer Anlar, MD.

ABSTRACT

Objective: At the craniocervical junction, developmental anomalies of the atlas may produce clinical symptoms by compressing on the vertebral artery, particularly during extreme rotational movements of the cervical spine. The aim of the present study was to investigate several varieties and deformities of the atlas vertebra from the skeletal specimens of Eastern Anatolian people.

Methods: This study was carried out over a 3-year period, 2000 through to 2002 in the Department of Anatomy, Firat, Yuzuncu Yil and Ataturk University, Turkey. Developmental anomalies and the variants of the first vertebrae were investigated on 86 atlas.

Results: Ponticulus posterior was observed with a low frequency on right as 2.3%. The bilateral localization was 10.5% and the left-side localization was 9.3%. Ponticulus lateralis showed an equal localization as 1.2% on the right, 1.2% on the left and 1.2% bilateral. In the present study, a complete subdivision of the joint surface was observed in 11 atlas (12.8%). Processus infratransversarius atlantis with a frequency between 1.2%-7%, arthrotic formation and corona atlantis peridensals in 8 cases (9.3%) were also found.

Conclusion: The low frequency for ponticulus posterior might be peculiar to the population living in this area.

Variations of atlas ... Kavakli et al

Table 1 - Variations and arthrotic changes of atlas found in the present study (N=86).

<table>
<thead>
<tr>
<th>Variations</th>
<th>Localization Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right</td>
</tr>
<tr>
<td>Ponticulus posterior</td>
<td>2</td>
</tr>
<tr>
<td>Ponticulus lateralis</td>
<td>1</td>
</tr>
<tr>
<td>Ponticulus posterolaterialis</td>
<td></td>
</tr>
<tr>
<td>Facies articularis superior atlantis bipartita</td>
<td>5</td>
</tr>
<tr>
<td>Processus infratransversarius atlantis</td>
<td>3</td>
</tr>
<tr>
<td>Corona atlantis peridentalis</td>
<td></td>
</tr>
</tbody>
</table>

Arthrotic formation

<table>
<thead>
<tr>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

cervical vertebra in the mentioned population, which have not been documented in the literature. The clinical symptoms and disturbances caused by the anomalies of the atlas were also reviewed.

Methods. This study was carried out over a 3-year period from 2000 through to 2002, in the Department of Anatomy, Firat, Yuzuncu Yil and Ataturk University, Turkey. The present study is based on the examination of 86 complete and undamaged adult atlas vertebrae. Most of them were the course materials obtained from cadavers for our medical students. The others were from a collection of vertebrae available in our departments. Our materials were of undetermined age and gender. Special attention was directed to the bridge formation and arthritic changes of the atlas, which are responsible for clinical symptoms.

Results. The results are summarized in Table 1 as the shape variations and arthritic formations (Figures 1-4).

Bony bridges. (Figure 1) In the present study, ponticulus posterior was observed with a frequency of 2.3% on the right. The percentage of bilateral localization was 10.5% and the left-sided localization was found with 9.3%. Partial posterior bridge formation was found with 9.3% and complete formation with 12%. The lateral bony bridge, ponticulus lateralis represented an equal localization with frequencies of 1.2% on the right, 1.2% on the left and 1.2% bilateral. One case showed both posterior and lateral bridges (Table 1).

Facies articularis superior atlantis bipartita. (Figure 2) Eleven atlases (12.8%) presented with a complete subdivision of the joint surface was found in our study (Table 1). No incomplete subdivision was observed.

Processus infratransversarius atlantis. (Figure 3) This variation was observed with a frequency of 3.5% on the right, 1.2% on the left and 7% bilateral (Table 1).

Arthritic deformities. (Figures 3 & 4). In our study, an arthritic formation at the arcus anterior atlantis was found in 8 cases with a frequency of 9.3% (Table 1).

Discussion. Bridge formations of the atlas vertebrae: ponticulus posterior and ponticulus lateralis. According to standard anatomical description, a wide groove for vertebral artery and suboccipital nerve on the superior aspect of the posterior arch of the atlas vertebra crosses behind each lateral mass. In some cases it is partly or wholly made of a foramen by bone arching back from the superior surface of the lateral mass.11 This bony bridge was first reported by MacAlister.6 It was variously described as ponticulus posterior or posticus, Kimmerle’s variant, retroarticular canal, foramen retro-articular superior, retro condylar vertebral artery ring, posterior atlantoid foramen, foramen arcual and atlas bridging.2-5,8,10,12,13 The ponticulus posterior was observed with a low frequency on the right (2.3%) (Table 1). The percentage of the bilateral and left side localization (Figure 1) showed no difference with those of the American population, which was reported to be between 9-15%.3,5,6 Its incidence in the Indian population was found as 11.4%14 while in the South African population, it was reported with complete occurrence as 11.7% on the right and 24.6% on the left.4 Our study presented with partial posterior bridge formation with 9.3% and complete formation with 12.8% (Table 1). Taitz and Nathan5 found partial formation as 25.9% and complete formation as 7.9%.

Ponticulus lateralis. Represents the lateral bridge, which extends from the upper edge of the massa lateralis to fuse with the posterior root of the transverse process.5,10 The frequency of the lateral
Variations of atlas ... Kavakli et al

Figure 1 - A bony arch bridging the sulcus arteriae vertebralis (arrows) behind the massa lateralis atlantis, namely, ponticulus posterior. A complete bridge over the foramen processus transversi of the atlas, ponticulus lateralis (asterisk).

Figure 2 - Superior articular facet of atlas vertebra showing subdivision into 2 parts, facies articularis superior atlantis bipartite, with bilateral localisation (asterisk).

Figure 3 - A bony extension in the caudal direction, emerging from the transverse process of the atlas (such as, processus infra-transversarius atlantis) (arrows) and arthrotic formation of the atlas at the arcus anterior atlantis (asterisk).

Figure 4 - A bony element at the arcus anterior atlantis, corona atlantis peridentalis or "coulisse of the atlas" (asterisk).

bridge in our study generally resembles to that of the previous studies. In the literature, this variation is reported with a percentage between 1.8-3.8,5,10,15 which agrees with our findings. Our study also presented an equal localization for this formation, namely 1.2% on the right, 1.2% on the left and 1.2% bilateral. Our observations showed a ratio of 2:1 for complete and incomplete formation, similar to Taitz and Nathan5 finding. In our study, one atlas (1.2%) showed both posterior and lateral bridges (Table 1), which accords with the literature.5,10 The origin of atlas bridging has been debated in the literature. The opinion of ancient authors was that the posterior bridge is a direct homologue of the superior oblique process of other mammals.6,10 Familial nature of atlas bridging proposed by Selby et al17 and an acquired ossification of ligaments occurring with aging5,8 was not the same with the study of Lamberty and Zivanovic,3 that cartilaginous ponticuli posteriores have been seen in fetuses and children. Recently, atlas bridging is supposed to develop from materials of the dorsal arch and the lateral extensions of the proatlas and to belong to the manifestations of the occipital vertebra.10

The clinical significance of bridge formation has been discussed in reference to their possible effect on normal vertebral artery function due to the ponticulus formations that can be identified on the conventional lateral and a.-p. radiographs.3,10,18 This formation can cause compression of the vertebral artery, particularly during extreme rotational movements of the cervical spine. This may play a role in reduction of vertebral artery blood flow, leading to symptoms of vertebrobasilar insufficiency.3,4,7 A correlation between migraine cervicale and the presence of a ponticulus posterior was reported. In such cases, resection of the ponticulus may be indicated, which results in decompression of the vertebral artery and the accompanying nerves.10,18

Facies articularis superior atlantis bipartita. The superior articular surface of the
Variations of atlas ... Kavakli et al

The atlas is concave and elongated, joint with the corresponding occipital condyle. Sometimes the articular surface is divided into 2-facet. In the present study, a complete subdivision of the joint surface was observed in 11 atlases (12.8%) (Table 1) (Figure 2). Prescher found this variation in 28 out of 200 atlases (14%): 7.5% on the right, 2% on the left, 4.5% bilateral. In the literature, the frequency of the bipartite superior joint surface was reported between 5.5-33%. That this variation develops from 2 sources, namely, the proatlas and C1 segment, may explain its origin. Clinical symptoms and disturbances caused by facies articularis superior bipartita atlantis have not been reported. However, it may be mistaken for fractures in tomography.

Processus infratransversarius atlantis. This is a bony extension emerging from the transverse process in caudal direction. In the present study, this structure was observed in different localization with a frequency of 1.2-7% in variable lengths (Figure 3). Clinically, this variation may represent symptomatic disturbances at the cranio-cervical junction. Patients with symptomatic variations of the cranio-cervical junction often complain of pain in the neck region or at the back of the head or they suffer from vertigo or disturbances in balance. Principal mechanisms of symptoms are mechanical compression of nervous and vascular structures, marked instability or in contrast, elevated rigidity.

Arthrotic formations simulating variants: Corona atlantis peridentalis. In the present study, arthritic formation, corona atlantis peridentalis or "coulisse of the atlas" termed by Prescher, at the arcus anterior atlantis was found in 8 cases (9.3%), corresponding to the "coulisse of the dens" (Figure 3 & 4). Lombardi reported that these formations might be partly attributed to the occipital vertebra. He also observed that the patients in his series were free of any physical disturbances attributable to the malformation.

In conclusion, the findings from our study generally agree with those of the previous. The only difference was that ponticulus posterior was observed with a low frequency on the right, only perhaps encountered by chance. It might even be peculiar to the population living in the area. Our results for processus infratransversarius atlantis, arthrotic formation and corona atlantis peridentalis, will also be compared with those of further works for our literature survey failed to find any data concerning them in other populations.

Acknowledgment. The authors would like to thank Assoc. Prof. Hassan Boyuknaka who made the necessary correction of the English grammar.

References