Enhanced susceptibility of low-density lipoprotein to oxidation in wet type age-related macular degeneration in male patients

Alireza Javadzadeh, MD, Amir Ghorbanibaghjo, MSc, PhD, Nadereh Rashtchizadeh, MSc, PhD, Mandana Rafeey, MD, Babak Rabimi-Ardabili, MD.

ABSTRACT

Objectives: To determine the susceptibility of low-density lipoprotein (LDL) to oxidation in the plasma of male patients with wet type age-related macular degeneration (AMD) and in a similar control group, in order to evaluate the LDL oxidative status as risk factor of AMD.

Methods: We conducted this study in the Retina Service, Department of Ophthalmology, Nikookari Eye Hospital – Drug of Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran during the period between October 2004 and December 2005. Sixty male patients with AMD (mean age 67 ± 16 years) with BMI 4.1 ± 1.3 were selected as the patient group. The control group consisted of 60 males, apparently healthy, and without ophthalmologic signs and family history of AMD. Low-density lipoprotein was isolated by gradient ultracentrifugation and susceptibility of LDL to in vitro copper – mediated oxidation was assayed by measuring conjugated dienes production (lag phase duration) at 234 nm. Lipid and lipoproteins were determined by standard methods.

Results: Comparing with control, significant reduction in the duration of lag phase (p<0.004) and a significant increase in LDL-C concentrations (p=0.006), were noticed. No significant change in cholesterol (p>0.3), triglyceride (p>0.1) and high density lipoprotein cholesterol (p>0.1) levels were found between control and patient groups. A significant negative correlation between Lag phase and LDL-C levels (p=0.004, r=-0.364) was found in the patient group.

Conclusions: The increased LDL concentration and enhanced susceptibility of LDL to oxidation may play a role in the wet type AMD process.

From the Department of Ophthalmology (Javadzadeh), Nikookari Hospital-Drug of Applied Research Center, Drug of Applied Research Center (Ghorbanibaghjo, Rashtchizadeh, Rabimi-Ardabili) and Gastroenterology and Liver Research Center (Rafeey), Tabriz University of Medical Sciences, Tabriz, Iran.

Received 10th June 2006. Accepted 10th October 2006.

Address correspondence and reprint request to: Dr. Alireza Javadzadeh, Department of Ophthalmology, Nikookari Hospital-Drug of Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail: javadzadehalireza@yahoo.com

Saudi Med J 2007; Vol. 28 (2): 221-224
Research Center, Tabriz University of Medical Sciences, Tabriz, Iran during the period between October 2004 and December 2005. The participants of this study included 60 men aged 60-84 (mean age 67 ± 16) with bilateral wet type AMD. Approval for the study was obtained from the ethical committee of Tabriz University of Medical Sciences, which is in compliance with the Helsinki Declaration. All patients were evaluated by a retina specialist. Wet type AMD was detected by slit-lamp examination with a 78-diopter indirect lens, fundus photography and fluorescein angiography (Imagenet 2000, Topcon TRC50IX, Topcon Corp, Japan). The control group consisted of 60 men aged 63-82 years (mean age 73 ± 6.3) without opthalmologic complications and family history of AMD. Exclusion criteria for the patient group were dry type AMD, diseases other than AMD associated with neovascularization and also cardiovascular, renal and liver diseases. None of the patients were on antioxidant micronutrient supplementation and they all lived in the same industrial area. Due to the rather small numbers of patients in the studied groups, we excluded diabetics and current or past smoking patients from the study. Both groups of patients were matched by age and gender. In all cases the diagnosis of wet type AMD was based on ophthalmoscopy signs of disease, fundus photography and fluorescein angiography of the retina. In all patients we evaluated the body mass index (BMI). After obtaining informed consent, fasting venous blood from each subject was collected in EDTA – coated tubes. To separate plasma, the blood was centrifuged at 3000 g for 10 minutes at 4°C. Total serum cholesterol (Cho), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) level were assayed by commercially available kits. The LDL fraction was isolated from plasma by ultracentrifugation (Beckman Optima TLX) at 15°C at 100,000 rpm for 4 hours with the TLA-100.3 rotor. Oxidation of LDL (50 µgr) was determined as the production of conjugated dienes induced Cu²⁺ (5 µM) every 5 minutes at 234 nm in one ml phosphate buffer solution at 37°C at ultraviolet (Cecil 8000. spectrophotometer) and the results were recorded as lag phase. 22,23

The statistical analysis was carried out using the SPSS 12 for windows program. Results are expressed as mean ± SD. Independent–sample t-test and Mann-Whitney U test as appropriate were used to assess significance of differences between control and AMD patients. Correlation was evaluated by Pearson’s test and the statistical significance was set at p<0.05.

Results. Table 1 describes the biochemical investigations in the AMD and control patients. We found a significant increase (p=0.006) in LDL-C and a significant decrease (p<0.004) in Lag phase in the patient group when compared with the control group. There were no significant difference in Cho (p>0.3), TG (p>0.1) and HDL-C (p>0.1) concentrations between control and patient groups. A significant negative correlation between Lag phase and LDL-C levels (p=0.004, r=–0.364) was found in the patient group (Figure 1). In the AMD group, we found that an average BMI index (24.5 ± 4.8 kg/m²) was higher when compared with control patients (22.7 ± 4.2 kg/m²).

Discussion. All studies demonstrate that the prevalence, incidence, and progression of AMD rises steeply with increasing age, 24,25 but knowledge of other possible risk factors is controversial. It is possible that in different populations the relative role of individual risk factors may vary. It is difficult to interpret connections between lipid changes and development of AMD. Atherosclerotic vascular disease, due to influence on choroidal circulation, has been hypothesized as

<table>
<thead>
<tr>
<th>Investigations</th>
<th>Mean ± SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients (n=60)</td>
<td>Control (n=60)</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>197.1 ± 45.6</td>
<td>190.1 ± 29.8</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>169.3 ± 85.7</td>
<td>151.3 ± 43</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>137.4 ± 45.9</td>
<td>118.5 ± 24.7</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>39.8 ± 9.6</td>
<td>42.4 ± 9.4</td>
</tr>
<tr>
<td>Lag time (min)</td>
<td>57.3 ± 12.1</td>
<td>61.7 ± 12</td>
</tr>
</tbody>
</table>

*Independent–sample t-test; **Mann-Whitney U test,
LDL-C - low-density lipoprotein cholesterol,
HDL-C - high density lipoprotein cholesterol

Figure 1 - Correlation between the serum low-density lipoprotein (LDL-C) and Lag time of LDL oxidation in the patient group (r=–0.364, p=0.004).
possible pathogenetic factor for development of AMD. However, the study of the relationship of lipid change and atherosclerosis and the development of AMD has not presented uniform results.13,24-31 Some studies have found an increased risk of AMD with a past cardiovascular event32,33 systemic hypertension26,30,34 and increased blood cholesterol levels,13,31 although other studies have found no association with vascular events,28,31,35,36 systemic hypertension28,31,35,36 or blood lipid levels.28-35

Results of our study are consistent with results of previous studies correlating AMD with lipid disturbances; further, our results showed, in the AMD group, a significant correlation between Lag phase and other lipid factors such as TG, HDL and LDL. Hyman et al26 found a positive association between neovascular AMD and higher cholesterol intake and elevated serum HDL-C. In this study AMD type was not related to serum cholesterol, TG and LDL-C. Similarly, a positive relationship was found with high serum HDL-C and an inverse with total cholesterol-HDL ratio by other authors.30

The interpretation of these results is difficult and inconsistent with the hypothesized connection of AMD to lipid changes and cardiovascular disease. Although scientific literature documented multiple etiologic theories and pathologic abnormalities in patients with AMD, blood lipid abnormality and atherosclerotic process could play an important role in AMD development by affecting the flow of choroidal vessels, but the mechanism for this process is unclear.27

Some of the differences in results among the various studies may be due to differences in populations with completely different nutritional habits, or to methodological issues. One of the serious restrictions in establishing the role of lipid metabolism in the development of AMD is a lack of direct possibility for its measurement in the retinal vessels. In interpreting the results it must be assumed that the concentration in the peripheral blood correlates with the concentration in the eye.

Apart from genetic conditions, a very large group of risk factors is involved in the development of AMD. It seems that changes in lipid metabolism could play a pathogenic role, especially at the very beginning of natural history of the AMD development and could have a damaging influence also on choriocapillaris. It can be the reason for ischemia of the fovea avascular zones and disorders in the physiologic balances of angiogenic and antiangiogenic factors, which might consequently lead to neovascularization of the macular region.

It was concluded that patients with wet type AMD have an increased atherogenic tendency of serum lipids and an increased susceptibility of LDL to oxidation. Our study confirmed that serum lipids and increased susceptibility of LDL to oxidation in such patients could be introduced as a satisfactory method in prognosis of wet type AMD. However, more research will have to be conducted to assess the significance of LDL susceptibility to oxidation in prognosis and development of wet type AMD.

References