Restriction fragment length polymorphism of virulence genes cagA, vacA and ureAB of Helicobacter pylori strains isolated from Iranian patients with gastric ulcer and nonulcer disease

Shohreh Farshad, MSc, PhD, Aziz Japoni, MSc, PhD, Abdolvahab Alborzi, MD, Marzieh Hoseini, BSc.

ABSTRACT

Objective: To investigate the distribution of different genotypes of major virulence factors cagA, vacA and ureAB among Helicobacter pylori (H. pylori) strains isolated from patients with ulcerative and nonulcerative diseases.

Methods: This study was performed in Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, during November 2004 to October 2005. Sixty-five H. pylori strains, 30 from patients with gastric ulcer (ulcerative disease) and 35 from patients with gastritis (nonulcerative disease) were analyzed by polymerase chain reaction (PCR) to investigate the presence of cagA, vacA and ureAB genes. The amplified fragments were then digested with the restriction enzymes HaeIII (for ureAB) HincII (for cagA) and HphI (for vacA).

Results: We found a significantly higher prevalence of vacA-positive strains in ulcerative disease (UD) than that in nonulcerative disease (NUD) patients (p<0.05). Restriction fragment length polymorphism (RFLP) analysis revealed 2 different patterns for cagA gene. The prevalence of pattern β with 3 bands was significantly higher in both groups of patients. HaeIII digestion resulted in a strictly homogeneous pattern for 83.33% of the vacA+ strains isolated from the patients with UD. This pattern was significantly associated with UD status (p<0.05). The ureAB polymorphism analysis revealed 10 distinguishable DNA banding patterns among them the pattern named ureAB 5a was the most prevalent (47.61%) in all isolates. No association between a specific DNA pattern and clinical disease was observed for cagA and ureAB (p>0.05).

Conclusion: It seems that in our patients, the presence of cagA gene may not necessarily be a risk factor for ulcer disease, while a homologous genotype of vacA appears to be associated with an increase risk of UD development. Lastly, despite the existence of a high degree of genomic variability within ureAB, conserved DNA banding profiles are distributed in our areas.

From the Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Received 29th August 2006. Accepted 25th November 2006.

Address correspondence and reprint request to: Dr. Shohreh Farshad, Assistant Professor, Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz 71937-11351, Iran. Tel. +98 (711) 6262225. Fax. +98 (711) 6287071. E-mail: s_farshad@yahoo.com

Helicobacter pylori (H. pylori) associated gastritis is today recognized as the major cause of duodenal and gastric ulcers, gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. The reasons for such a clinically diverse outcome of infection may include host and environmental factors as well as differences in the prevalence or expression of bacterial virulence factors. Individual H. pylori isolates demonstrate a high level of genomic diversity as defined by different techniques. Genomic differences may affect virulence factors, altering their function and antigenicity. Antigenic variation of certain gene products may represent an immune escape mechanism for H. pylori strains in the host organism.

A large number of studies have attempted to identify virulence markers genotypes in H. pylori allowing the disease outcome of an infection to be predicted. These studies were mainly based on analysis of vacA, cagA and urease gene. According to the literature, virulent cytotoxin vacA, ureAB and cagA producing strains are more common among patients with a variety of clinical symptoms of gastritis, gastric ulcer, duodenal ulcer, and reflux esophagitis. However, discrepancies on the association of different genotypes with increased virulence and ulcer or nonulcer disease or gastric carcinoma development, have been described in reports from diverse geographical regions worldwide. Helicobacter pylori infection is common in Iran with approximately 82-92% of individuals infected. Therefore, the present study is aimed at investigating...
vacA, cagA and ureAB status present in H. pylori isolates recovered from Iranian patients, as well as the relevance of genotyping these virulence factors to define our strain genetic diversity and correlation between genotypes and gastric ulcer and nonulcer diseases.

Methods. A total of 114 patients undergoing endoscopy, at the Endoscopy Ward of Nemazee Hospital of Shiraz University of Medical Sciences in Shiraz, Southern Iran, were included in this study (mean age 41.3 ± 14 years, range 16-80 years, 60 males and 54 females). The diagnosis of H. pylori infection and the confirmation of gastric disease by histology were established by a central study pathologist. Another antral biopsy was taken from each patient and transferred to the lab in appropriate transfer media (brain heart infusion broth supplemented with 20% glucose). General exclusion criteria for patients’ recruitment to the study were previous attempts to eradicate H. pylori, use of antibiotics, proton pump inhibitors or bismuth compounds within the last 2 weeks prior to endoscopy, and previous gastric surgery. Formal permissions from all patients under the study were provided before sampling.

Isolation of H. pylori strains. Biopsy samples from patients were gently homogenized and cultured on rapid urease test media and Brucella agar base (Merek, Germany) supplemented with 10% lysed horse blood and antibiotics of amphotericin B (2 µg/lit), trimethoprim (5 µg/lit) and nalidixic acid (10 µg/lit). The cultures were kept in a microaerophilic atmosphere (6% O₂, 7.1% CO₂, 7.1% H₂, 79.8% N₂) provided by Anoxomate (Mark II, Mart Microbiology BV, Netherlands) at 37°C for 5-10 days. The samples were also evaluated for presence of H. pylori by positive oxides, catalase and rapid urease tests.

DNA extraction. Helicobacter pylori isolates were pelleted, resuspended in 383 µl of Tris-EDTA buffer [10 mM Tris-HCl and 1mM EDTA, pH=8.0], 15 µl of 10% Sodium Dodecyl Sulfate] and 2 µl of 20 µg/ml solution of proteinase K, and incubated at 56°C for 2 hours in a hot block. The DNA was extracted with an equal volume of phenol-chloroform-isopropanol (25:25:1), precipitated with 2 volume of 97% ice cold ethanol followed by washing with 70% ethanol, and redissolved in 50 µl of TE buffer, as described in detail elsewhere and used for polymerase chain reaction (PCR) assay.

The PCR examination. The primers sequences were previously reported and obtained from TIB MOLBIOL Syntheselabor GmbH (Berlin, Germany). Descriptions and sequences of the PCR primers used in this study are given in Table 1. All PCR mixtures contained 1 x PCR buffer, 200 µM each deoxynucleoside triphosphate, 25 pmol of each primer, 1.5 mM MgCl₂, 5U of Taq polymerase and 10 µl of DNA extracted from H. pylori isolates. The PCR amplification included an initial denaturation step at 94°C for 2 min followed by 35 cycles with the following profiles: for vacA, 94°C for 1 min, 58°C for 1 min and 72°C for 1 min; for cagA, 94°C for 45s, 50°C for 45s, and 72°C for 45s; for ureAB, 94°C for 1 min, 50°C for 1 min, and 72°C for 2 min. Amplifications were carried out in a gradient thermal cycler (Eppendorf, Germany). Individual PCR products were electrophoresed on agarose gels, stained with ethidium bromide, and were photographed.

The PCR-RFLP analysis. The PCR amplified vacA, cagA or ureAB fragments were digested with HaeIII (for ureAB) HinfI (for cagA) and HphI (for vacA), for 4 h at 37°C in the appropriate buffer recommended by the supplier (MBI, Fermentas, Lithuania). The digests were analyzed by electrophoresis in a 2% agarose gel with 1x Tris-Acetate-ethylenediaminetetraacetic acid (EDTA) buffer followed by ethidium bromide staining.

Statistical analysis. Fishers exact test was used for statistical evaluation of data derived from the results of the procedures mentioned above. An amount of <0.05 was accepted for P value as statistically significant.

Results. **Patient groups and prevalence of H. pylori infection.** According to endoscopic and pathologic findings the patients were categorized to 2 groups: ulcerative (gastric ulcer) (37) and nonulcerative (gastritis) (77). Totally from antrum of ulcerative and nonulcerative patients 30 (81.08%) and 35 (45.45%) H. pylori strains were isolated respectively.

Prevalence of cagA, vacA and ureAB among H. pylori positive patients. In polymerase chain reaction analysis from the total of 65 H. pylori isolates, 31 strains (47.69%) were cagA+, 37 strains (56.92%) vacA+ and 42 (64.61%) strains ureAB+. The cagA, vacA and ureAB positivity were higher in patients with ulcerative disease (UD) (60%, 80% and 73.3% respectively) than that in patients with nonulcerative disease (NUD) (37.14%, 37.14 % and 57.14% respectively), but the difference between the groups was statistically significant (p<0.05) only for vacA gene (data not shown).

The PCR-RFLP analysis. Following digestion of the amplified cagA gene with HinfI enzyme, 2 different patterns were revealed, α and β (Table 2). The prevalence of pattern β was significantly higher in both groups of patients, compare with the pattern of α (p<0.05). However, the statistical analysis had shown no significant association between this pattern and the clinical outcomes (p<0.05).

The HphI digestion of the 1.162-bp vacA fragment resulted in a strictly homogeneous profile for 83.33% of the vacA+ strains (20 of 24) isolated from the
patients with UD. However, 46.15% (6 from 13) of the vacA+ strains isolated from patients with NUD showed a strictly homogeneous profile. This pattern was significantly associated with UD status (p<0.05) (Figure 1).

All 42 H. pylori ureAB+ isolates under the study were classified into 10 distinguishable DNA banding patterns by ureAB polymorphism analysis (Table 3). This finding suggests a great genetic diversity of urease genes among H. pylori clinical isolates. The patterns have 3 to 6 bands with different sizes. Twenty out of the 42 isolates (47.6%) belonged to the pattern named ureAB 5a with 5 bands from them 65% (13 from 20) belonged to UD isolates suggesting that strains from patients with more severe forms of gastroduodenal disease were more homogeneous than strains carried by patients with milder disease. No association between a specific DNA pattern and clinical disease was observed (p>0.05) for ureAB.

Discussion. According to the different reports, overall H. pylori infection prevalence in Iran is 82-90%.17,18 Although these data indicate the occurrence of H. pylori infection in our country, little is known about the genetic features of isolates that cause infectious disease. In the present study, we addressed the investigation of cagA, vacA and ureAB status and genotypes of H. pylori isolates recovered from an Iranian population resident in South of Iran with 2 forms of gastric diseases, ulcerative and nonulcerative. On analyzing 65 H. pylori isolates, it was found that 31 strains (47.69%) were cagA+, 37 strains (56.92%) vacA+ and 42 (64.61%) strains ureAB+. cagA, vacA and ureAB positivity was higher in patients with UD (60%, 80% and 73.3% respectively) than that in the patients with NUD (37.14%, 37.14 % and 57.14% respectively), but the difference between the groups was statistically significant (p<0.05) only for vacA gene (data not shown). It was reported from different centers that in patients with ulcer diseases, the positivity rates of cagA and vacA, and both cagA, vacA were 71-100%, 47.5-92%, 37-75%, respectively.20,21

In all of these studies, the positivity of cagA and vacA was higher in the patients with UD, however, some was statistically significant22,23 and some were not when it was compared to patients without ulcer.24,25 Such differences in the prevalence of cagA and vacA positivity could not be explained precisely; however, they have been attributed to the genetic heterogeneity or to differences in the geographic location.1,26,27 Adherence of H. pylori to the gastric epithelium and secretion of interleukins are believed to be an important step in the induction of active inflammation of the mucosal layer, which then can result in ulceration. Vacuolating cytotoxin vacA aid in colonization of the gastric mucosa and subsequently, seem to modulate the host’s immune system.28 Host cytokines gene polymorphisms may be as important as exogenous stimuli in influencing the number of cytokines produced and, consequently, the pattern and severity of inflammation.29 These polymorphisms may differ from one geographical population to another, based on genetic diversity, which can explain the possibilities for certain genotypes in Iranian population that prone them to H. pylori vacA+ infection.

Using Hinfl restriction enzyme, we found 2 genotypes for cagA gene. The genotype β was significantly more prevalent among all our isolates in compare with genotype α (92.31% vs. 7.69%, respectively) but with no significant association with a specific clinical outcome. This finding is in accordance with Saribasak et al12 study stating that they could find only one genotype 2a for H. pylori cagA positive strains, which were typical

Table 1 - Polymerase chain reaction (PCR) primers for amplification of CagA, VacA and UreAB sequences

<table>
<thead>
<tr>
<th>Gene and DNA region amplified</th>
<th>Primer</th>
<th>Primer sequence (5’-3’)</th>
<th>Size (bp) of PCR product</th>
</tr>
</thead>
<tbody>
<tr>
<td>vacA</td>
<td>Forward</td>
<td>GCTTCTCTTACCCACCAATGC</td>
<td>1,612</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TGGCAGGGTGTTCACCATAT</td>
<td></td>
</tr>
<tr>
<td>cagA</td>
<td>Forward</td>
<td>AGTAAGGAGAAAACCAATGA</td>
<td>1,320</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>AATAAGCCTTAGATCTTTTGGAAATC</td>
<td></td>
</tr>
<tr>
<td>ureAB</td>
<td>Forward</td>
<td>AGGAGAATGAGATGAGA</td>
<td>2,420</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>ACTTTATGCGCTGGT</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 - Restriction fragment length polymorphism - polymerase chain reaction patterns of cagA gene in a representative group of patients

<table>
<thead>
<tr>
<th>Pattern</th>
<th>No. of patients (cagA)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UD</td>
<td>NUD</td>
</tr>
<tr>
<td>α (no cut)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>β (3 bands)</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>

UD - ulcerative disease, NUD - non-ulcerative disease

genotypes in strains from Western countries. Therefore, it seems that the evaluation of genetic diversity in H. pylori-associated cagA gene can be attributable to the colonial relationship and epidemiology of H. pylori in defined population. On the other hand, although cagA positivity was higher in the patients with ulcer than that in the patients without ulcer, this was not statistically significant and did not seem to be an important risk factor for the development of ulcer in our patients. It can be explained by the absence of sequence divergence in cagA genes of our isolates, when divergence within portions of the cagA product may impact on the structure, antigenicity, function and consequently on the role of that in a specific clinical feature.

The RFLP-PCR analysis of the PCR products with several restriction enzymes confirmed the high degree of diversity of the genomic structure of the vacA gene among H. pylori strains isolated from gastric biopsy specimens.30,31 The digestion of PCR products with HaeIII enzyme allowed us to identify a genetic correlation for 26 of 37 H. pylori strains examined, thus, resulting in a homogeneous group of strains with identical vacA gene restriction patterns. In addition, these strains were strongly associated with the presence of the ureAB gene rather than cagA gene and occurred more frequently in the patients with ulcerative disease. In fact, the genetically related strains were isolated from 83.33% of ulcerative patients but significantly (p<0.05) less frequently (46.15%) from nonulcerative patients. Therefore, our results support the finding that cagA gene status may not necessarily be a universal virulent marker as claimed by Yamaoka et al.15 However, in disagreement with these authors, this study validates that vacA genotype may well predict clinical outcome as shown by van Doorn et al.32

Figure 1 - Representative restriction fragment length polymorphism - polymerase chain reaction results for HpaI digestion of the 1.162-bp vacA fragment in H. pylori strains isolated from patients with ulcerative diseases (lanes 2, 3, 4) and nonulcerative diseases (lanes 5, 6). Lane 1: no digested vacA fragment, Lane 7: molecular size marker.

Table 3 - Restriction fragment length polymorphism - polymerase chain reaction patterns of ureAB gene in a representative group of patients.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>No. of patients (ureAB+)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UD</td>
<td>NUD</td>
</tr>
<tr>
<td>ureAB 3a</td>
<td>1 (4.5)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>ureAB 3b</td>
<td>1 (4.5)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>ureAB 4a</td>
<td>1 (4.5)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>ureAB 4b</td>
<td>2 (9.1)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>ureAB 4c</td>
<td>1 (4.5)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>ureAB 5a</td>
<td>12 (54.5)</td>
<td>8 (40)</td>
</tr>
<tr>
<td>ureAB 5b</td>
<td>1 (4.5)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>ureAB 5c</td>
<td>1 (4.5)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>ureAB 6a</td>
<td>1 (4.5)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>ureAB 6b</td>
<td>1 (4.5)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>

UD - ulcerative disease, NUD - non-ulcerative disease

As it has been shown in Table 3 all 42 H. pylori ureAB+ isolates under the study were classified into 10 distinguishable DNA banding patterns by ureAB polymorphism analysis. These results showed considerable genetic divergence among H. pylori isolates that circulate in our community. Foxall et al33 found 10 distinct patterns among 22 clinical isolates when HaeIII restriction enzyme digested the 2.4-kb PCR product amplified from ureAB gene. Akopyanz et al4 demonstrated that 27 HaeIII RFLP patterns were obtained from the same PCR products for ureAB gene. In a similar study performed by Catalano et al14 90 H. pylori isolates were classified into 33 distinguishable DNA banding patterns by ureAB polymorphism analysis. In our study, although 10 different patterns were obtained for ureAB, almost 48% of the isolates belonged to only one pattern named ureAB 5a with 5 bands. This finding corresponds with the results of Catalano et al,14 which showed one fingerprint named ureAB 4 was the most prevalent among 33 patterns. Then, although it seems generally that a large and very genetically diverse population of H. pylori circulates in...
the community, certain genomic markers, such as ureAB are widely distributed and partially conserved.

In conclusion, the results of this study by PCR-RFLP pattern analysis suggest that the presence of cagA gene may not necessarily be a risk factor for ulcer disease, while a homologous genotype of vacA appears to be associated with an increase risk of UD development in our area. Lastly, the existence of a high degree of genomic variability within H. pylori ureA gene may be of practical significance when considering the effectiveness of urease-based vaccines in diverse and heterogeneous human population.

Acknowledgment. This work was supported by research grant # 82-17 from the Professor Alborzi Clinical Microbiology Research Center. The authors wish to thank Masoumeh Hayati for her critical assistance in sample collection and all the staff of Prof. Alborzi Clinical Microbiology Research Center for their assistance in bacterial isolation, identification and purification.

References

21. Lamarque D, Gilbert T, Roudot-Thoraval F, Deforges L, Chaumette MT, Delchier JC. Seroprevalence of eight Higher Helicobacter pylori Genotyping of Helicobacter pylori ... Farshad et al

