CASE REPORTS

Noninsulinoma pancreatogenous hypoglycemia syndrome in a Saudi male

A diagnostic and management dilemma

Abdullah M. Karawagh, MD, FRCPC, Layla S. Abdullah, MD, FRCPC, Abdelhamid M. Gasim, MD, MRCP, Muntasir M. Abdelaziz, FRCP (Glasg), PhD.

ABSTRACT

Nesidioblastosis is a term used to describe islet hyperplasia, which can be focal or diffuse. It is characterized by hypoglycemia, hyperinsulinism in the absence of insulinoma. Nesidioblastosis is often poorly responsive or unresponsive to medical management, necessitating pancreatectomy. It represents the most common cause of hyperinsulinism in neonates.

Although initially thought to affect only infants and children, numerous cases have been reported in adults of all ages. We report here an adult case of persistent hypoglycemia secondary to nesidioblastosis in Saudi Arabia and the Gulf region. We would like to highlight its importance as a cause of hypoglycemia in adults. The literature has been reviewed and addressed in relation to the case. We highlighted the importance of this condition as a cause of hypoglycemia in adults, and its diagnostic and therapeutic dilemma.

Case Report. A 75-year-old Saudi male, previously healthy, presented in September 2001 with episodes of dizziness, sweating, headache, palpitation, and feeling hungry for 4 months. All these symptoms were relieved after meals. He admitted that he gained 5 kilograms over the last month. The symptoms have gradually progressed over time in frequency and severity to the extent that it started to happen daily, and he required 2 admissions to the hospital because of decreased level of consciousness over one month. In October 2001, he presented at the emergency room with loss of consciousness and blood glucose of 1.5 mmol/l. He completely regained his consciousness without any neurological deficit after being given IV 50% dextrose. He was referred to our institution for further evaluation of hypoglycemia.

The patient was admitted to the hospital and initial blood work for blood glucose, complete blood count, urea, creatinine, and liver function test was normal. The chest x-ray and electrocardiogram were normal. His thyroid function, morning cortisol, and parathyroid hormone were all normal. The patient was subjected to fasting...
hypoglycemic test for 48-hours. His frequent blood glucose monitoring ranged between 4-6 mmol/l. While in hospital he had blood sample for serum insulin-like growth factor-1 (IGF-1), and this came to be normal. Computed tomography (CT) scan of the abdomen was unremarkable. Subsequently magnetic resonance imaging (MRI) of the pancreas and octreotide scan were performed and showed no abnormality. Endoscopic ultrasound was normal. He was scheduled to have pancreatic angiography with selective arterial calcium stimulation and hepatic venous sampling for blood glucose and C-peptide, and put on diazoxide, while waiting for the procedure. During hospitalization, he did not go into hypoglycemia. He was discharged home and given an appointment for readmission to have the planned investigation. One week after discharge he presented to the emergency room with dizziness, and his blood glucose was 2.0 mmol/l. The serum sample was sent for insulin and C-peptide and result came back later to be high at a level of 170Uu/ml for insulin (normal value up to 30Uu/ml) and 19.7μg/ml for C-peptide (normal value between 0.8-4.0). Repeat serum cortisol during this admission was normal. The blood glucose responded to 25% dextrose and his symptoms improved. One week later he underwent pancreatic angiography with selective arterial calcium stimulation and hepatic venous sampling for blood glucose and insulin C-peptide. The angiography was normal, and the result of the stimulation test failed to localize the presence of occult insulinoma (Table 1). The patient was referred to surgery where he had partial pancreatectomy. Gross examination of the pancreatic tissue was grossly unremarkable and serial sectioning failed to detect any tumor. Microscopic examination of the pancreatic tissue showed hyperplasia of islets with an increased number of randomly scattered islets both in pancreatic parenchyma as well as in the peripancreatic fat (Figures 1a & 1b). The hyperplasic islets were variable in size and shape and very close or immediately budding from the pancreatic ducts (ductulosinsular complexes) (Figure 2). The pathological picture was consistent with the diagnosis of nesidioblastosis. Following surgery he was free from hypoglycemia for 3 months, before he started again having symptoms of hypoglycemia and low blood glucose in the range of 2.5-3.0 mmol/l with high insulin level and C-peptide. A repeat MRI of the pancreas failed to show a tumor. He was treated with Diazoxide 25mg bid day. Since then he has not had symptoms of hypoglycemia and no drop in the blood glucose.

Discussion. We describe here a 75-year-old Saudi male of noninsulinoma hyper-insulinemic hypoglycemia. This novel syndrome of non-insulinoma pancreatogenous hypoglycemia is characterized histologically by nesidioblastosis (islet hyperplasia) in the absence of insulinoma.\(^1\)\(^,\)\(^2\)\(^,\)\(^4\) It is reported initially in infancy and associated with mutation of the β-cell sulfonylurea receptor gene or potassium channel (Kir 6.2) gene.\(^5\)\(^,\)\(^6\) It accounts for 0.5-5% of the cases of organic hyper-insulinemia and is characterized by spontaneous or post-prandial hypoglycemia with a high level of insulin secondary to diffuse non-neoplastic β-cell hyper-function and hyperplasia. The diagnosis is usually based on histological findings of diffuse nesidioblastosis in the absence of gross or microscopic tumor in the right clinical setting.\(^2\) Although it is usually described in children, nesidioblastosis recently has been reported among the adult population, and may create a diagnostic and management dilemma for clinicians.\(^2\)\(^,\)\(^4\)

Nesidioblastosis is characterized by the presence islet cell enlargement, β-cell budding off ductular epithelium and islets in apposition to ducts,\(^2\)\(^,\)\(^4\) both features were observed in our patient. These findings were not pathognomic of the syndrome of noninsulinoma hyper-insulinemic hypoglycemia, as autopsy changes of similar features were observed in 36% of normal individuals without hypoglycemia. Furthermore, changes consistent with nesidioblastosis were reported in association other conditions such as insulinoma, in those treated previously with insulin, or sulfonylureas, Werner Morrison, Zollinger-Ellison syndrome, and multiple endocrine neoplasia type I. However, in our case there was no-concomitant insulinoma detected on ultrasound, CT scan or histologically, the patient gave no history of insulin or hypoglycemic agent administration, octreotide scan was negative, and both thyroid and parathyroid hormones were normal. The presence of diffuse islet cell hyperplasia in the presence of high insulin level and absence of any alternative explanation of hypoglycemia is consistent with the noninsulinoma hyper-insulinemic hypoglycemic syndrome (nesidioblastosis).

The diagnosis of this unique syndrome is very difficult and should be considered when there is unexplained

<table>
<thead>
<tr>
<th>Time</th>
<th>Glucose (4.1-9.0 mmol/L)</th>
<th>Insulin C-peptide (298-1324 pmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:04</td>
<td>5.8</td>
<td>797</td>
</tr>
<tr>
<td>15:05</td>
<td>5.6</td>
<td>895</td>
</tr>
<tr>
<td>15:06</td>
<td>5.8</td>
<td>974</td>
</tr>
<tr>
<td>15:07</td>
<td>5.9</td>
<td>530</td>
</tr>
<tr>
<td>15:08</td>
<td>5.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 - Pancreatic angiography with selective arterial calcium stimulation and hepatic venous sampling for blood glucose and insulin C-peptide.
Noninsulinoma pancreatogenous hypoglycemia syndrome ... Karawagh et al

As CT abdomen, endoscopic ultrasound, and octreotide scan all failed to demonstrate insulinoma, the patient was subjected to pancreatic angiography with selective calcium stimulation and hepatic venous sampling. Non-invasive imaging techniques, such as CT and MRI often fail to localize insulinoma smaller than 2cm in diameter. Boukhman et al9 examined the different investigation modalities used in localizing insulinoma and found that the sensitivities of CT scan to be 24% and MRI to be 30%. In contrast, selective calcium stimulation, and hepatic venous sampling demonstrated a high sensitivity approaching 100% in localizing insulin-secreting tumors.10 A negative test in our patient with negative radiological localizing studies reinforces the diagnosis of non-insulinoma islet cell hyperplasia. Subsequently the diagnosis was confirmed histologically after surgery. Despite the presence of many diagnostic modalities, the diagnosis of this condition remains a challenge and is usually confirmed after surgery. Service et al5 reported 5 cases of noninsulinoma hyper-insulinemic hypoglycemia, all of them confirmed histologically after pancreatectomy. Similarly, Writteles et al11 studied 32 patients that underwent surgical exploration for hyperinsulinemic hypoglycemia and found 27 (84%) to have insulinomas, and 5 were diagnosed as nesidioblastosis postoperatively.

Noninsulinoma hyperinsulinemic hypoglycemia continues to be a treatment dilemma. Surgery remains the treatment of choice and distal pancreatectomy was found to be effective in controlling hypoglycemia in 60% (3/5) of the patients in one series. Similarly Service et al5 reported complete resolution of the symptoms following surgical resection in 4 out of 5 patients. Although our patient did respond initially to surgical treatment, and his hypoglycemic symptoms

Figure 1 - Microscopic examination of the pancreatic tissue revealed hyperplasia of islets with increased number of randomly scattered islets both in a) pancreatic parenchyma (hematoxylin and eosin stain/objective power: 10) as well as in the b) peri-pancreatic fat (hematoxylin and eosin stain/objective power: 25).

Figure 2 - Microscopic examination of the pancreatic tissue (hematoxylin and eosin stain/objective power: 25) showing hyperplasic islets variable in size and shape and very close or immediately budding from the pancreatic ducts (ductuloinsular complexes).
Noninsulinoma pancreatogenous hypoglycemia syndrome ... Karawagh et al

recurred 3 months later. Our patient’s hypoglycemic symptoms were subsequently controlled with Diazoxide. Therapeutic agents used in controlling hypoglycemia in this condition include glucagons, Diazoxide, calcium antagonist, and octreotide.

References

Related topics