In vitro testing of daptomycin plus rifampin against methicillin-resistant Staphylococcus aureus resistant to rifampin

Faisal A. Khasawneh, MD, Deborah S. Ashcraft, MT (ASCP), SM, George A. Pankey, MD.

ABSTRACT

Objectives: To test for synergy between daptomycin (DAP) and rifampin (RIF) against rifampin-resistant methicillin-resistant Staphylococcus aureus (MRSA) isolates.

Methods: Synergy testing using time-kill assay (TKA) was performed on 6 clinically, and genetically unique RIF-resistant MRSA isolates. The isolates were identified out of 489 (1.2%) samples collected during April 2003 to August 2006, from patients at the Ochsner Medical Center in New Orleans, Louisiana, United States of America.

Results: Synergy testing of DAP plus RIF by TKA showed that 5 isolates were indifferent, but one isolate was antagonistic.

Conclusion: Our in vitro study failed to demonstrate synergy between DAP plus RIF, against our RIF-resistant MRSA isolates. Clinical failure of this combination should prompt the clinician to consider antagonism, as one of the potential causes.

From the Department of Internal Medicine (Khasawneh), King Hussein Cancer Center, Amman, Jordan, and formerly of Tulane Health Sciences Center, New Orleans, Louisiana, United States of America, and the Infectious Disease Laboratory (Ashcraft, Pankey), Ochsner Clinic Foundation, New Orleans, Louisiana, United States of America.

Received 16th June 2008. Accepted 3rd November 2008.

Address correspondence and reprint request to: Dr. George A. Pankey, Ochsner Clinic Foundation, Director of Infectious Disease Research, 1514 Jefferson Highway, New Orleans, Louisiana 70121, United States of America. Tel. +1 (504) 8424005. Fax. +1 (504) 8424361.
Methods. Standard laboratory powders of DAP (Cubist Pharmaceuticals, Inc., Lexington, Massachusetts, USA), and RIF (Sigma-Aldrich, St. Louis, Missouri, USA), and Etest® strips (AB Biodisk, Solna, Sweden) for DAP and RIF were used in the study. Six clinically and genetically unique RIF-resistant MRSA isolates were identified out of 489 (1.2%) samples collected during April 2003 to August 2006 from patients at the Ochsner Medical Center in New Orleans, Los Angeles, Louisiana, USA. As no patient data were used, the ethical approval was waived by the Institutional Review Board committee. Fingerprinting of the isolates was carried out by pulsed-field gel electrophoresis. Staphylococcus aureus (S. aureus) ATCC 29213, and Enterococcus faecalis ATCC 29212 were used for quality control.11 Mueller-Hinton broth (Becton-Dickinson Microbiology Systems, Sparks, Maryland, USA) was prepared in the laboratory, and supplemented to the recommended 50mg/L calcium for the minimal inhibitory concentration (MIC), and time-kill assay (TKA) testing of DAP.12 Mueller-Hinton II agar plates (Becton-Dickinson Microbiology Systems, Maryland, USA) were used for the Etest MIC determination. Trypticase soy agar with 5% sheep blood plates (Becton-Dickinson Microbiology Systems, Maryland, USA) were used for the colony counts in the TKA. Minimal inhibitory concentrations were determined by broth microdilution (BMD), and E-test method. The BMD was performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.12 The concentration range tested was 0.25-256 µ/ml for RIF, and 0.015-32 µ/ml for DAP. The Etest method was performed in triplicate following manufacturer’s guidelines. The concentration range tested was 0.016-256 µ/ml for DAP, and 0.002-32 µ/ml for RIF. The CLSI 2007 interpretive standards (µ/ml) for S. aureus are: RIF≤1 susceptible, 2 intermediate, ≥4 resistant; DAP≤1 susceptible.11 Time-kill assay was performed according to CLSI guidelines,15 and as described in a previous study.14 Each isolate was tested against DAP and RIF alone, and in combination, at a concentration equal to the Etest MIC for DAP and equal to 32, the highest peak serum level achievable clinically15 for RIF. The final inoculum was approximately 10⁵ CFU/ml, and was verified after plating in duplicate using a spiral plater (Spiral Biotech, Bethesda, Maryland, USA). Synergy was defined as a ≥2 log₁₀ decrease in colony count after 24 hours by the combination, compared to the most active single agent, and the number of surviving organisms in the presence of the combination was >2 log₁₀ CFU/ml below the starting inoculum.16 Indifference was defined as a <2 log₁₀ increase or decrease in colony count at 24 hours by the combination, compared with that by the most active drug alone.16 Antagonism was defined as a ≥2 log₁₀ increase in colony count after 24 hours by the combination, compared to the most active drug alone.16

Results. The DAP plus RIF combination was indifferent by TKA against 5 isolates (Table 1). The combination was antagonistic against one isolate performed in triplicate (log₁₀ change: +2.89, +3.06, and +2.69) (Figure 1a). This isolate was also tested using 4, 8, and 12 hours as additional sampling time points. Two concentrations of RIF (16 and 32 µ/ml) were tested with a DAP concentration equal to the MIC. These isolates showed some killing up to 12 hours with the combination, but between 12-24 hours, the CFU/ml increased. The RIF 32 µ/ml combination showed antagonism, while RIF 16 µ/ml (a concentration more likely reached in vivo) showed indifference with the combination (Figure 1b).

Discussion. In 1957, Jones et al17 wrote, “There is a paucity of useful data from which the therapeutic effectiveness of combinations of antibiotics can be compared to that of their individual components”. Half a century later, this statement still holds true. The rate at which pathogenic bacteria is acquiring resistance is alarming, and there is a fear it will outpace antibiotic development rate. Studying antibiotic combinations looking for synergistic combinations that are clinically efficacious and safe, is worthwhile.

Using TKA, Credito et al5 studied the combination of DAP plus RIF against 50 S. aureus isolates (9 methicillin-susceptible, 32 methicillin-resistant, 6 vancomycin-intermediate, and 3 vancomycin-resistant strains). Only 1 strain (vancomycin-intermediate strain) showed synergy between DAP plus RIF; all

<p>| Table 1 - Daptomycin and rifampin MICs (µg/ml) by BMD and Etest (mean). Synergy testing by TKA. |
|---|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------|</p>
<table>
<thead>
<tr>
<th>MRSA isolates</th>
<th>RIF BMD MIC</th>
<th>RIF Etest MIC</th>
<th>DAP BMD MIC</th>
<th>DAP Etest MIC</th>
<th>TKA Log₁₀ change (cfu/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7054</td>
<td>>256</td>
<td>>32</td>
<td>0.5</td>
<td>1</td>
<td>+0.37 IND</td>
</tr>
<tr>
<td>7102</td>
<td>>256</td>
<td>>32</td>
<td>0.5</td>
<td>1</td>
<td>-1.24 IND</td>
</tr>
<tr>
<td>6429</td>
<td>>256</td>
<td>>32</td>
<td>0.25</td>
<td>0.5</td>
<td>+0.03 IND</td>
</tr>
<tr>
<td>6562</td>
<td>>256</td>
<td>>32</td>
<td>0.5</td>
<td>1</td>
<td>-1.30 IND</td>
</tr>
<tr>
<td>4959</td>
<td>>256</td>
<td>>32</td>
<td>0.25</td>
<td>0.5</td>
<td>-0.08 IND</td>
</tr>
<tr>
<td>5734</td>
<td>>256</td>
<td>>32</td>
<td>0.5</td>
<td>0.75</td>
<td>+2.89, +3.06, +2.69, +2.15 ANT</td>
</tr>
</tbody>
</table>

MRSA - methicillin-resistant Staphylococcus aureus, RIF - rifampin, BMD - broth microdilution, TKA - time-kill assay, MIC - minimal inhibitory concentrations, DAP - daptomycin, IND - indifferent, ANT - antagonistic
other combinations were “additive.” In comparison to our study, they used DAP and RIF concentrations for synergy testing at 1-2 dilutions below the MIC.

Sakoulas et al used rifampin-susceptible MRSA isolates to demonstrate that the bactericidal activity of DAP is augmented by the addition of RIF in an in-vitro experimental rat model of endocarditis. The combination regimen resulted in at least 3-log reduction in bacterial densities in vegetation over the treatment period, compared with bacterial densities at the start of therapy. Unlike the above study, we only used rifampin-resistant isolates. This, compartment-specific anti-microbial properties, and the immune system role in the process, make it difficult to compare those 2 studies.

Although the mechanism of antagonism between RIF and DAP in our isolates is not clear, Mwangi et al tracked the in vivo evolution of multi-drug resistance S. aureus in one isolate, and noticed decreased susceptibility to DAP that coincided with the development of RIF resistance. It is worth mentioning that the isolate was not exposed to DAP before. The genetic mechanisms underlying this phenomenon are unknown.

In conclusion, our in vitro study failed to demonstrate synergy between DAP plus RIF, against our RIF-resistant MRSA isolates. Daptomycin plus RIF was repeatedly antagonistic by TKA for one isolate. Even though in vitro antagonism, may or may not predict in vivo antagonism, clinical failure on this combination should prompt the clinician to consider antagonism as one of the potential causes. More RIF-resistant MRSA isolates should be tested to determine if other isolates demonstrate in vitro DAP plus RIF antagonism.

Acknowledgment. The authors gratefully acknowledge Royanne Beard, for her laboratory assistance, Pat Pankey for the laboratory management, and Richard Goering, Creighton University Medical Center, for performing the PFGE analyses.

References

References

References should be primary source and numbered in the order in which they appear in the text. At the end of the article the full list of references should follow the Vancouver style.

Unpublished data and personal communications should be cited only in the text, not as a formal reference.

The author is responsible for the accuracy and completeness of references and for their correct textual citation.

When a citation is referred to in the text by name, the accompanying reference must be from the original source.

Upon acceptance of a paper all authors must be able to provide the full paper for each reference cited upon request at any time up to publication.

Only 1-2 up to date references should be used for each particular point in the text.

Sample references are available from: http://www.nlm.nih.gov/bsd/uniform_requirements.html