Successful thrombolytic therapy for stuck mitral mechanical valve

Hamoud Y. Obied, MD, JBCS, Mohammed F. Ibrahim, FRCS (C/Th), Bendehiba S. Latroche, MD, FESC, Maya M. Mroue, PharmD.

Case Report. A 65-year-old male patient, known hypertensive and with ischemic heart disease, had coronary artery bypass grafting and mechanical mitral valve replacement (On-X size 31/33 mm Medical Carbon Research Institute, LCC, Austin, Texas 78754, USA) 2 years ago. He also had a permanent pacemaker inserted 7 years ago for complete heart block. He presented to the emergency room in our hospital on January, 2009 complaining of exertional shortness of breath for the past 2 weeks, which became worse in the last 2 days without chest pain or cough. Upon examination, the patient was conscious and oriented, his blood pressure was 95/56 mm Hg and his heart rate was 63 per minute in atrial fibrillation, and an oxygen saturation of 98% on room air. Chest examination revealed bilateral basal crepitations, his heart examination showed weak clicky sound of the mitral prosthesis and had mild lower limb edema. The electrocardiography showed rate controlled atrial fibrillation and ventricular pacing. Laboratory investigations were within normal limit except for an international normalized ratio (INR), which was 1.8 on warfarin 2.5 mg daily. He was admitted as a case of congestive heart failure to rule out mitral valve dysfunction. Transesophageal echocardiography (TEE) showed a stuck anterior leaflet with the presence of a large thrombus (8x14 mm) on the left atrial side of the prosthes (Figure 1b). Fluoroscopy (Figure 1c) showed anterior leaflet blocked in semi open position, posterior leaflet partially blocked. The patient received streptokinase 500,000 IU bolus and an infusion of 1,500,000 IU over 10 hours followed by heparin infusion to keep activated partial thromboplastin time ranging between 60 and 70. A follow up TTE showed decrease in mean gradient from 18-8 mm Hg at same heart rate. We decided to give the patient another cycle of thrombolytic therapy.
Thrombolytic therapy ... Obied et al

Figure 1 - Pre-thrombolytic a) CW Doppler apical 4 chamber, abnormal gradient across MV prosthesis 35/18 mm Hg at HR 60/mn. b) TEE mid esophageal 40 degrees, large clot (8X14mm) seated on the top of the anterior leaflet (Arrow). c) Fluoroscopy, AP-cranial, pre thrombolytic, anterior leaflet blocked in semi open position (Arrow), posterior leaflet partially blocked. CW - continuous wave, MV - mitral valve, HR - heart rate, TEE - transesophageal echocardiography, AP - anteroposterior

Figure 2 - Post-thrombolytic a) CW Doppler apical 4 chamber, 24 hours post thrombolytic, normalization of gradient across MV prosthesis 9/3 mm Hg at HR 60/mn. b) Fluoroscopy, AP-cranial, 24 hours post thrombolytic, both leaflets fully opened (Arrow). CW - continuous wave, MV - mitral valve, HR - Heart rate, AP - anteroposterior.

of Streptokinase 1,000,000 IU over 10 hours followed by heparin infusion. The third TTE (24 hours post thrombolytic therapy) showed complete disappearance of the thrombus and full mobilization of valvular leaflets with a mean gradient of 3 mm Hg. At the same heart rate, (Figure 2a) which was confirmed by fluoroscopy (Figure 2b), the patient remained hemodynamically stable with uneventful recovery and was discharged home after 6 days from admission in a good condition on Aspirin 81 mg, lisinopril 10 mg twice daily, Lipitor 40 mg, and warfarin 5 mg daily to keep his INR between 3 and 4 and to be followed up with TTE in the outpatient clinic.

Discussion. Thrombosis of a prosthetic valve is one of the most feared complications of cardiac valve replacement. The presenting clinical picture ranges from the absence of symptoms to cardiogenic shock. The TEE is the gold standard in diagnosis and treatment guidance. The management of obstructive PVT remains widely debated due to lack of randomized controlled trials. The 2006 American College of Cardiology/American Heart Association guidelines state that fibrinolytic therapy for a left-sided PVT is commonly ineffective and risky (cerebral emboli occurs in 12-15% of cases). Fibrinolytic therapy is recommended for patients with New York heart association (NYHA) classes III or IV and a small burden clot in whom surgical intervention carries a high risk and is contraindicated. Surgical thrombectomy and valve replacement have been considered as the traditional management of choice with a hospital mortality ranging from 11-16%. Thrombolytic therapy was recommended only for individuals who were poorly
surgical candidates or critically ill that is, in NYHA clinical classes III or IV. These authors were concerned by the high rate of systemic embolism associated with thrombolytic therapy.7 Thrombolytic therapy has recently been proposed as a first-line therapy3 in attempt to avoid the high rate of morbidity and mortality of surgery. Streptokinase and Alteplase are both available in our center; however, the patient received streptokinase based on case reports2,8 and the result of case series (127 cases) where streptokinase, urokinase and recombinant tissue plasminogen activator were used and showed success rates of 57%, 36.6% and 43%. Partial success was obtained after the first 10 hours of thrombolytic infusion; after discussing the case with the treating physician, the decision was to challenge the patient with the same thrombolytic agent for another 10 hours without a bolus and at a lower infusion rate. Upon completion, TEE showed complete dissolution of the thrombus with full mobilization of valve’s leaflets.

Despite thrombolytic therapy of PVT has an unpredictable risk of embolization and complications, it represents an alternative to surgery with 84% success and low complication rates (stroke 9%, mortality 5%).9,10

References


Case Reports

Case reports will only be considered for unusual topics that add something new to the literature. All Case Reports should include at least one figure. Written informed consent for publication must accompany any photograph in which the subject can be identified. Figures should be submitted with a 300 dpi resolution when submitting electronically or printed on high-contrast glossy paper when submitting print copies. The abstract should be unstructured, and the introductory section should always include the objective and reason why the author is presenting this particular case. References should be up to date, preferably not exceeding 15.